Algorithms and Complexity
Solutions to Assignment 1

Erwan LEMONNIER

November 9, 2000

1 Lunch tickets

1.1 Terms
Indata: Amount of tickets n, ticket values v1,...,v,, amount of
lunches m and lunch prices Iy, .. .,1,,. Values and prices are integers.

Utdata: “no” if you can’t pay any lunch exactly with the tickets,
otherwise (j, k) where j is the lunch that uses the more tickets and
k the amount of tickets used.

Design and analyse an algorithm that solves this problem in poly-
nomial time, assuming that V (i,7), v; < n? and I; < m?.

1.2 Problem Analysis

This problem possesses 2 characteristics that point out Dynamic Programming
as the technique that should be used to solve it:

overlapping subproblems This can be shown by drawing the graph of the
“brut” search on a simple example. In such a graph, all the combinations
of elements of vy, ..., v, are represented, and not only the optimal ones.
Furthermore, depending on the way the graph is built, different leaves
may correspond to the same combination.

optimal substructure The problem at rank n can be divided into 2 subprob-
lems of rank n — 1 by taking the same problem in which one of the lunch
ticket is used, and the same problem in which this ticket is not used. The
optimal solution of the main problem is the “best” of the two solutions of
these subproblems.

Furthermore, this problem shows a resemblance with a 0/1 Knapsack prob-
lem for which the ‘value’ is 1 for all the tickets, and the ‘weight’ is the value of
the ticket. The difference is that instead of searching solutions under an upper
bound, we want to reach an exact sum, which is one (or more) of the /;. In
its general terms, 0/1 Knapsack is NP complete, but when searching only the
optimal weights, it can be solved in polynomial time. The lunch ticket problem
has similar terms, and its solution suggested here is indeed a variant of the 0/1
Knapsack’s solution.

1.3 Solution

The previous optimal substructure property is the path to understanding the
algorithm presented here, which uses Dynamic Programming to build all the
solutions of the problem for {vi}, then {vi,v2}, and so forth until {vi,...,v,}
is reached. To design this algorithm, let us first express the problem in other
terms. Let’s define the sequence V,, and L,,, and the integer l,,,4. as follows:

Vn: {Ul,...,’un}
L, {liy ..y}
lmaz : lmaz S Lm and V ll € Lm, ll S lmaz

linae 18 thus the maximum value of L,,. We also define KX:M ={k{,... k" }
by: given V,, k7 is the size of the largest subset of V;, for which the sum of
its elements equals . That way, k' is simply the solution to the lunch ticket
problem for only one lunch of price 7 and n tickets V,.

Our new goal is to design an algorithm that, for each lunch price i between
1 and ;4. and for a sequence of tickets V,,, gives K;' , the set of all the opti-
mal solutions for lunches of price between 1 and [,,,.. We will therefore build

a recurrence over the tickets of V;, by just listing some properties of the problem:

At first, when there is no ticket, the maximum amount of tickets that can
be used to pay one lunch is 0, hence:

Vo=0 = Vi€[Llnw], K =0

Then, given the solution of the problem for all lunch prices between 1 and
lmaz, using n — 1 tickets vq,...,v,_1, let’s suppose we receive one more ticket
v, and want to update the solutions to take it into account. For each lunch
price i, there are three possibilities:

e v, > i: the new ticket worths more than the lunch and cannot be used to
pay the lunch. We have to keep the previous best solution obtained with
VigeeroyUp—1.

e v, = i: we have two options. We can pay with only v,, or with the best
combination of tickets among vy, ...,v,—1 whose sum is ;. We should use
the option that uses the more tickets.

e v, < i: we again have two options. We can pay with the best combination
of tickets among vy, . .., v,_1 whose sum is i, or we can pay with v,, and the
tickets corresponding to the best combination among vy,...,v,_1 whose
sum equals ¢ — v,,.

These properties are summarized in the following recursive relation:

° KZVO

maz

={0,0,...,0}

o K ={kP,.. . k' }:Vi€[Llmaal
kP =max(k? ", 14+ k) ifi—v, >0
kP = max (k' 1) if i = v,
kr =kt otherwise

Solve(V,,L,)

(1) Imaz < max(L,y,)
(2) for j from 1 to I,
(3) k)« 0

for i from 1 to n
for j from 1 t0 linae '
if j > v; and k| #0
i i—1 i—1
ki < max(k; ", 1+k;_,.)
else if j = v;
i i—1
k} < max(1,k;)
else

o ot

AN AN AN N N N S S
O o
_ O —

—_
~ —

i i—1
kj — kj

(12) lunch + 0, tickets «+ 0

(13) foreach [€ L,,

(14) if k> k

(15) lunch <1, tickets < k!
(16) if tickets =0

(17) return “nej”

(18) else

(19) return (lunch, tickets)

Figure 1: Pseudo-code for an algorithm solving the lunch ticket problem

To get the solution (j, k) of the lunch ticket problem, we now just have to
look in K' for the values corresponding to l1,[2, ...ln, and select the highest
one as k, and its corresponding lunch price as [. Figure 1 gives the pseudo-
code for such an algorithm, which solves the lunch ticket problem and uses
the previous recursive relations. An example of a java implementation of this
pseudo-code is given in Annexe on page 7.

This algorithm could be improved by using only one array to store the values
of Klimam’ instead of n+ 1. It could then avoid copying k:; from one array to the
next, thus removing the last case of the if blocks. This improved algorithm is
illustrated in the java program given in Annexe.

1.4 Algorithm analysis

Let’s call T'(n,m) the running time of ‘Solve’ with the input V,, and L,,. Line
(1) is executed in time O(m) and lines (2) and (3) in time O(lyq). Lines (4) to
(11) are executed in time O(n.lyqe), and lines (12) to (19) in O(m). Therefore,

T(n,m) = O(m) + O(lmaz) + O(N-linaz)

{Vjiell,m], [; < m?} = lpae < m?

s0,
T(n,m) = O(m)+ O(m?)+ O(n.m?)
= O(n.m?)
Thus, if we consider the running time of ‘Solve’ with n as the variable, it runs
in time O(n), and with m as the variable, it runs in time O(m?).

2 Unimodal sequence

2.1 Terms
A sequence < aq,as,...,a, > is unimodal if 3 ¢ so that < aq,as,...,a; > is
strictly increasing and < ay, . . ., a,, > strictly decreasing. A circular unimodal

sequence is a sequence obtained by rotation (modulo n) of an unimodal sequence.
Build an algorithm running in time O(logn) or better that finds the highest
value in a circular unimodal sequence.

2.2 Problem analysis

There are algorithms finding the highest value in an unimodal sequence in time
O(logn). Their principle is to reduce recursively the interval of values of the
sequence in which to search for the maximum. At each step, 2 elements of the
sequence are examined, and depending on their value, all the elements before
the first element or after the last element are removed. And so on until only one
element is left, which must be the maximum. A similar method can be used to
solve the problem for circular unimodal sequences.

2.3 Solution

A unimodal sequence can be symbolically represented on a graph by a linear
function that grows then decreases, as show on figure 2. Although this rep-
resentation is not adequate for a sequence, it reflects the properties of strict
growth and decrease of the sequence’s elements. Therefore, in our case, we can
base our reasoning on this representation.

We will build an algorithm that takes a circular unimodal sequence, and
returns a circular unimodal sequence of half the length of the input, and which
still contains the maximum element of the input. When applying recursively
this algorithm, we will finally obtain a sequence with only one element: the
maximum.

The circular unimodal sequence resulting of the rotation of a unimodal se-
quence can be of two types: strictly increasing, decreasing then increasing (case 1
in figure 2), or strictly decreasing, increasing then decreasing (case 2 in figure 2).

Let’s A,, =< a1, az,...a, > be a unimodal sequence, and i = 7, j = %T" (if 7
is not an integer, take the biggest integer < % instead). We assume that n > 4.
If a; > a;41 it means A, is decreasing at 7, which we will write: (A,); \ -
Similarly, a; < a;+1 = (An); /. Let’s define the 2 following subsequences of
Ay,

Rotateof t>t-n Fotate of t<t-n
1 2
1] t fn
imodal Sequaice
' Bl : . B2 '
1 1 1 1
tH modn t t t+Hr

Figure 2: Two kind of circular unimodal sequences can be obtained by rotating
a unimodal sequence.

in —

A%— < Gy Qig1y- -, G5 >
out __

A% = <Agy..oy Qi Afy e, Qp >

Depending on the values of a; and a;, and on whether (A,); increases or
decreases, we can analyze 6 cases that define the algorithm we are looking for:

if (A,); /" and (4,); \y return Ai%"
if (A4,); \¢and (4,); /4 return A%“t

if a; > a; return A%t
2

if a; < a; return A%
2

if (A,): N\ and (4,); N\

if a; > a; return AT
2

if a; < a; return At
2

This algorithm returns a circular unimodal sequence of size § £ 1 which
contains the maximum element of A,,. We should prove this in each of the 6
cases, but since the demonstration is similar for all of them, we will only prove

the first one. The demonstration is based on figure 2. a4, is the maximum in
A,

(Ap)i A and(4,); v =

a; € B1, a]-ECl

or a; € Bl, a; € Al
or a; € B2, a; €C2

or a; € D2, ajECQ

a; € Bl, a; € C1 = Qmaer €< a
a; € B2, a; € C2 = Qmaer €< a

Finally, < a;,.

iy ey @ >
iy ey @ >

— impossible since i < j
— impossible since i < j

(see figure)
(see figure)

..,a; > is circular unimodal, since removing a subset of ele-

ments from a circular unimodal sequence does not affect its ‘circular unimodal-

)

ity’.

We can now design an algorithm using this 6 case study to recursively divide
by 2 the length of A,,. This recursion stops when only 3 elements are left, and
returns the maximum of these 3 elements. The previous case study can not be
made when there are 3 or less elements in the sequence, since we need 2 points
around a; and a; to establish whether (A,); and (A4,); increases or decreases.
Figure 3 gives the pseudo-code for the algorithm that returns the maximum of
a circular unimodal sequence.

FindMax(< aq,...,a, >)

(1)
(2)

(3)
(4)
(5)

ifn<3
return max(ay,...,a,)

i int(%), j + int(32)
if (ai < ai+1) and (G,j > aj_H)

return FindMax(< a;, ...

if (a; > a;41) and (a; < aj41)
return FindMax(< ay,

if (ai < ai+1) and (G,j < aj_H)

) Aj >)

ces By Ay ey Gy >)

if a; > a;
return FindMax(< ao, ..., a;,aj,...,a, >)
else
return FindMax(< a;,...,a; >)
if a; > a;
return FindMax(< a;,...,a; >)
else
return FindMax(< ao, ..., a;,aj,...,a, >)

Figure 3: Pseudo-code for an algorithm returning the maximum element in a
circular unimodal sequence

2.4 Algorithm analysis

Let’s T'(n) be the running time of ‘FindMax’ with < ay,...,a, > in input. We
assume n > 3. Since ‘FindMax’ calls itself recursively until the input has 3
elements, and that it divides by 2 the size of the input at each level of recursion,
‘FindMax’ calls itself k& times where:

...n
1nt(2—k) =3
hence,
k = c.logy(n)

Since the time to execute lines (1) and (2), or to reach a call to ‘FindMax’ while
executing the lines (3) to (16) is bounded by a constant independent of n, we
have:

T(n) = O(logn)

3 Annexe
The following program written in java is an example of implementation of the
algorithm designed to solve the lunch tickets problem. It is optimized to use

only 1 array and update only the necessary elements of the array when adding
a new ticket.

public class algl

{
private static int[] ticket = {1, 5, 2, 4}; //the ticket values
private static int[] lunch = {8, 3, T7}; //the lunch prices
private static int n = ticket.length; //amount of tickets
private static int m = lunch.length; //amount of lunches
private static int 1_MAX; //the most expensive lunch

//MAXs is an array containing at index i the size of the largest subset of
//tickets for which there sum is equal to the lunch of price (i+1)
private static int[] MAXs;

public static void main(String[] arg)

{
//initialisation: compute 1_MAX, build MAXs and fill it with zero
1_MAX = O;
for(int i=0; i<lunch.length; i++)
{
1_MAX = Math.max(1_MAX, lunch[il]);
}
MAXs = new int[1_MAX];

java.util.Arrays.fill(MAXs, 0);

/* Build the set of the optimal solutions for all
* lunch price between 1 and 1_MAX

*/
int value, sub;

//add each ’ticket[i]’ in turn to the set of solutions
for(int i=0; i<n; i++)

{
value = ticket[i];
//update the maximum sums that could be obtained without
//ticket[i] to add ticket[i] to them
for(int j=1_MAX-1; j>=value; j--)
{
sub = MAXs[j-valuel;
if (sub!=0)
MAXs[j] = Math.max(sub+1, MAXs[j1);
}
MAXs[value-1] = Math.max(MAXs[value-1], 1);
}

//search the maximum in MAXs
int j=0, k=0, 1;

for(int i=0; i<lunch.length; i++)

{
1 = lunch[il;
if (MAXs[1-11>k)
{
j=1;
k=MAXs[1-1];
}
}

System.out.println("j= "+j+" k= "+k);

